

CNASS CNASS

TEST REPORT						
ETSI EN 301 511 V9.0.2: 2003-03						
Report Reference No	TRE1303013502 R/C: 59940					
Compiled by	Jin There					
(position+printed name+signature):	File administrators Tim Zhang					
Supervised by	2 - Shank					
(position+printed name+signature):	Test Engineer Eric Zhang					
Approved by	In/entional					
(position+printed name+signature):	Manager Wenliang Li					
Date of issue	May 22, 2013					
Testing Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd					
Address	Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China					
Applicant's name	RICON TECHNOLOGIES FZE					
Address	Ras Al Khaimah,UAE P.O. Box 16111					
Test specification:						
Standard	ETSI EN 301 511 V9.0.2: 2003-03					
TRF Originator: Shenzhen Huatongwei International Inspection CO., Ltd						
Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.						
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.						
Test item description	Cellular Router					
Trade Mark:	RICON					
Manufacturer	RICON TECHNOLOGIES FZE					
Model/Type reference	S9922					
List Model	1					
Modulation:	GMSK					
Multislot Class	GPRS: Multi-slot Class 10/EGPRS Multi-slot Class 10					
Frequency Band	GPRS900/GPRS1800					
Operation Frequency	GPRS900:880MHz-915MHz/GPRS1800:1710MHz-1785MHz					
Power Class	GPRS900:Power Class 4/GPRS1800:Power Class 1					
Ratings	DC12.0V adapter from AC 230V/50Hz					
Result	Positive					

TEST REPORT

Test Report No. :		TRE1303013502	May 22, 2013	
·····			Date of issue	
Equipment under Test	:	Cellular Router		
Model /Type	:	S9922		
Listed Models	:	1		
Applicant	:		S FZE	
Address	:	Ras Al Khaimah,UAE P.0	D. Box 16111	
Manufacturer	:		S FZE	
Address	:	Ras Al Khaimah,UAE P.0	D. Box 16111	

standards on page 4: Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	TEST STANDARDS	4
<u>2.</u>	SUMMARY	5
2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8.	General Remarks Product Description Equipment under Test EUT operation mode Configuration of Tested System EUT configuration Modifications NOTE	5 5 5 6 6 6 6
<u>3.</u>	TEST ENVIRONMENT	8
3.1. 3.2. 3.3. 3.4. 3.5. 3.6.	Address of the test laboratory Test Facility Environmental conditions Test Description Statement of the measurement uncertainty Equipments Used during the Test	8 8 9 9 12 13
<u>4.</u>	TEST CONDITIONS AND RESULTS	14
4.1.	 ETSI EN 301 511 REQUIREMENTS 4.1.1. Transmitter output power in GPRS multislot configuration 4.1.2. EGPRS Transmitter output power 4.1.3. Radiated spurious emissions 	14 14 19 26
<u>5.</u>	TEST SET-UP PHOTOS OF THE EUT	53

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

ETSI EN 301 511 V9.0.2 (2003-03)–Global System for Mobile communications (GSM);Harmonized EN for mobile stations in the GSM 900 and GSM 1800 bandscovering essential requirements underarticle 3.2 of the R&TTE directive (1999/5/EC)

ETSI TS 151 010-1 V10.2.0 (2012-10) – Digital cellular telecommunications system (Phase 2+); Mobile Station (MS) conformance specification; Part 1: Conformance specification (3GPP TS 51.010-1 version 10.2.0 Release 10)

<u>3GPP TS 51.010-1 version 10.2.0 Release 10</u>–Digital cellular telecommunications system (Phase 2+);Mobile Station (MS) conformance specification; Part 1: Conformance specification(3GPP TS 51.010-1 version 10.0.0 Release 10

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample	:	Mar 26, 2013
Testing commenced on	:	Mar 26, 2013
Testing concluded on	:	May 22, 2013

2.2. Product Description

The **RICON TECHNOLOGIES FZE**.'s Model: S9922 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Cellular Router	
Model Number	S9922	
Power Class	GPRS900:Power Class 4/GPRS1800:Power Class 1	
Multislot Class	GPRS: Multi-slot Class 10 EGPRS Multi-slot Class 10	
Operation Frequency	GPRS900:880MHz-915MHz/GPRS1800:1710MHz-1785MHz	
Modilation Type	GMSK	
Antenna Type	Internal	
Operation Frequency Band	GPRS900/GPRS1800	
GSM Release Version	R97	

2.3. Equipment under Test

Power supply system utilised

Power supply voltage	0	230V / 50 Hz	0	115V / 60Hz
	0	12 V DC	0	24 V DC
	ullet	Other (specified in blank bel	ow)

DC 12.0 V Adapter from AC 230V/50Hz

Test frequency list

Frequency Band	Test Channel	Test Frequency
	Low (980)	881.20 MHz
GPRS900	Middle (62)	902.40 MHz
	High (120)	914.00 MHz
	Low (520)	1711.80 MHz
GPRS1800	Middle (698)	1747.40 MHz
	High (880)	1783.80 MHz

Type of Mobile Station and Additional Information

Table 1: Type of Mobile Station (Re. ETSI EN 301 511 Annex A.1)

ltem	Type of Mobile Station	Support	Mnemonic
1	HSCSD Multislot MS	NO	Type_HSCSD_Multislot
2	R-GSM MS	NO	Type_R-GSM
3	Support of GPRS Multislot class	YES	Type_GPRS_Multislot_uplink
	on the uplink		
4	EGPRS	YES	Type_EGPRS
5	EGPRS capable of 8PSK in	YES	Type_EGPRS_8PSK_uplink
	Uplink, of all Multislot classes		

Page 6 of 53

Table 2: Additional information (Re. ETSI EN 301 511 Annex A.2)

Item	Additional Information	Support	Mnemonic
1	Telephony.	NO	TSPC_Serv_TS11
2	Permanent Antenna Connector	YES	TSPC AddInfo PermAntenna

2.4. EUT operation mode

The EUT and test equipment were configured for testing according to ETSI EN 301 511 V9.0.2 (2003-03), where refer to ETSI TS 151 010-1 V10.2.0 (2012-10) for details.

2.5. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Table 2-1 Equipment Used in Tested System

Adapter:

Model: KW300-120E20 Input:100-240V~50/60Hz 0.8A Output: +12V DC 2.0A Power Cable: 120cm ♦ Shielded ♦ Unshielded

2.6. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- $\, \odot \,$ Supplied by the lab

0	Power Cable	Length (m) :	1
		Shield :	/
		Detachable :	1
0	Multimeter	Manufacturer :	/
		Model No. :	1

2.7. Modifications

No modifications were implemented to meet testing criteria.

2.8. NOTE

1. The EUT including GPRS, EGPRS, WCDMA and WLAN function, The functions of the EUT listed as below:

	Test Standards	Reference Report
Radio-WCDMA	ETSI EN 301 908-1 V5.2.1: 2011-05 ETSI EN 301 908-2 V4.2.1: 2010-03	TRE1303013501
Radio-GSM	ETSI EN 301 511 V9.0.2: 2003-03	TRE1303013502
Radio-WLAN	ETSI EN 300 328 V1.7.1: 2006-10	TRE1303013503
EMC-GSM	ETSI EN 301 489-1 V1.9.2: 2011-09 ETSI EN 301 489-7 V1.3.1: 2005-11	TRE1303013504
EMC-WCDMA	ETSI EN 301 489-1 V1.9.2: 2011-09 ETSI EN 301 489-24 V1.5.1: 2010-10	TRE1303013505
EMC-WLAN	ETSI EN 301 489-1 V1.9.2: 2011-09 ETSI EN 301 489-17 V2.2.1: 2012-09	TRE1303013506
EMC	EN 55022:2010 EN 55024:2010	TRE1303013507
EMF	EN62311:2008	TRE1303013508

2. The frequency bands used in this EUT are listed as follows:

Frequency Band(MHz)	2400-2483.5	5150-5350	5470-5725	5725-5850
802.11b	\checkmark	—	—	—
802.11g	\checkmark	—	—	—
802.11n(20MHz)	\checkmark	—	—	—
802.11n(40MHz)	\checkmark	—	—	—

3. The EUT incorporates a SISO function, Physically, the EUT provides one transmitter and one receiver.

Modulation Mode	TX Function
802.11b	1TX
802.11g	1TX
802.11n (20MHz)	1TX
802.11n (40MHz)	1TX

3. <u>TEST ENVIRONMENT</u>

3.1. Address of the test laboratory

Shenzhen Huatongwei International Inspection Co., Ltd Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China Phone: 86-755-26715686 Fax: 86-755-26748089

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Mar. 29, 2012. Valid time is until Feb. 28, 2015.

A2LA-Lab Cert. No. 2243.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until Sept. 30, 2013.

FCC-Registration No.: 662850

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 662850, Renewal date June. 01, 2012, valid time is until Jun. 01, 2015.

IC-Registration No.: 5377A

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Jan. 25, 2011, valid time is until Jan. 24, 2014.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

NEMKO-Aut. No.: ELA125

Shenzhen Huatongwei International Inspection Co., Ltd has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10, the authorization is valid through July 07, 2013

VCCI

The 3m Semi-anechoic chamber $(12.2m \times 7.95m \times 6.7m)$ and Shielded Room $(8m \times 4m \times 3m)$ of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2010. Valid time is until Dec. 23, 2013.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2010. Valid time is until May 06, 2013.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the DNV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2013.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature: 25 °C High Temperature: 55 °C Low Temperature: -20 °C Normal Voltage : AC 230V/50Hz High Voltage:AC 253V/50Hz Low Voltage:AC 203V/50Hz Relative Humidity: 55 % Air Pressure: 989 hPa

3.4. Test Description

ESTI	ETSI TS 151	EN-R (note): Test Descriptions &	Verdict		Note
EN 301 511	010-1	Test Conditions	GSM	DCS	-
Section 4.2.1	Clause 13.1	Transmitter - Frequency error and phase			
		error			
		NT/NV	N/A	N/A	
		LT/LV	N/A	N/A	
		LT/HV	N/A	N/A	
		HT/LV	N/A	N/A	
		HT/HV	N/A	N/A	
		Vibrated X/Y/Z	N/A	N/A	
Section 4.2.2	Clause 13.2	Transmitter - Frequency error under			
		multipath and interference conditions			
		NT/NV	N/A	N/A	
		LT/LV	N/A	N/A	
		LT/HV	N/A	N/A	
		HT/LV	N/A	N/A	
		HT/HV	N/A	N/A	
Section 4.2.3	Clause 13.6	Transmitter - Frequency error and phase			
		error in HSCSD multislot configuration			
		NT/NV	N/A	N/A	
		LT/LV	N/A	N/A	
		LT/HV	N/A	N/A	
		HT/LV	N/A	N/A	
		HT/HV	N/A	N/A	
Section 4.2.4	Clause	Frequency error and phase error in			
	13.16.1	GPRS multislot configuration			
		NT/NV	PASS	PASS	
		LT/LV	PASS	PASS	
		LT/HV	PASS	PASS	
		HT/LV	PASS	PASS	
		HT/HV	PASS	PASS	
		Vibrated X/Y/Z	PASS	PASS	
Section 4.2.5	Clause 13.3	Transmitter output power and burst			
		timing			
			N/A	N/A	
		LT/LV	N/A	N/A	

		LT/HV	N/A	N/A	
		HT/LV	N/A	N/A	
		HT/HV	N/A	N/A	
Section 4.2.6	Clause 13.4	Transmitter - Output RF spectrum			
		NT/NV	N/A	N/A	
		LT/LV	N/A	N/A	
		LT/HV	N/A	N/A	
		HT/LV	N/A	N/A	
		HT/HV	N/A	N/A	
Section 4.2.7	Clause 13.7	Transmitter output power and burst			
		timing in HSCSD multislot			
		configurations			
		NT/NV	N/A	N/A	
			N/A	N/A	
			N/A	N/A	
			N/A	N/A	
				N/A	
Section 4.2.8		Transmitter - Output RE spectrum in	11/7	11/7 1	
0001011 4.2.0		HSCSD multislet configuration			
				N/A	
				IN/A	
			IN/A	IN/A	
			N/A	N/A	
			N/A	N/A	
Section 4.2.9	Clause 13.9	Transmitter - Output RF spectrum for			
		MS supporting the R-GSM frequency			
		band			
		NT/NV	N/A	N/A	
		LT/LV	N/A	N/A	
		LT/HV	N/A	N/A	
		HT/LV	N/A	N/A	
		HT/HV	N/A	N/A	
Section 4.2.10	Clause	Transmitter output power in GPRS			Rema
	13.16.2	multislot configuration			rk 2
		NT/NV	PASS	PASS	
		LT/LV	PASS	PASS	
		LT/HV	PASS	PASS	
		HT/LV	PASS	PASS	
		HT/HV	PASS	PASS	
Section 4.2.11	Clause	Output RF spectrum in GPRS multislot			
	13.16.3	configuration			
		NT/NV	PASS	PASS	
			PASS	PASS	
			PASS	PASS	
			PASS	PASS	
			PASS	PASS	
Section 4 2 12	Clause	Conducted spurious emissions - MS	17.00	17.00	
0000011 4.2.12	12 1 1	allocated a channel			
	12.1.1		DAGG	DASS	
			DASS	DASS	
			PASS	FASS DASS	
Section 4.2.42	Clause	Conducted enurious amissions MC in	FA00	FA33	+
Section 4.2.13		idle mode			
	12.1.2		DAGO	DAGO	
			PASS	PASS	
			PASS	PASS	
		N1/HV	PASS	PASS	
Section 4.2.14	Clause	Conducted spurious emissions for MS			
	12.3.1	supporting the R-GSM frequency band -			
		MS allocated a channel			
		NT/NV	N/A	N/A	
		NT/LV	N/A	N/A	

			1	r	1
		NT/HV	N/A	N/A	
Section 4.2.15	Clause	Conducted spurious emissions for MS			
	12.3.2	supporting the R-GSM frequency band -			
		MS in idle mode			
		NT/NV	N/A	N/A	
		NT/LV	N/A	N/A	
		NT/HV	N/A	N/A	
Section 4 2 16	Clause	Radiated sourious emissions - MS			Rema
00000174.2.10	12 2 1	allocated a channel			rk /
	12.2.1		DASS	DASS	
			FA33	FA33	
			PASS	PASS	
		NI/HV	PASS	PASS	_
Section 4.2.17	Clause	Radiated spurious emissions - MS in idle			Rema
	12.2.2	mode			rk 5
		NT/NV	PASS	PASS	
		NT/LV	PASS	PASS	
		NT/HV	PASS	PASS	
Section 4.2.18	Clause	Radiated spurious emissions for MS			
	12.4.1	supporting the R-GSM frequency band -			
		MS allocated a channel			
		NT/NV	Ν/Δ	Ν/Δ	
			IN/A	IN/A	
0 11 1 0 10		NI/HV	N/A	N/A	
Section 4.2.19	Clause	Radiated spurious emissions for MS			
	12.4.2	supporting the R-GSM frequency band -			
		MS in idle mode			
		NT/NV	N/A	N/A	
		NT/LV	N/A	N/A	
		NT/HV	N/A	N/A	
Section 4.2.20	Clause	Receiver Blocking and spurious			
	14 7 1	response - speech channels			
	17.7.1	NT/NV	PASS	PASS	
Section 4 2 21	Clause	Receiver Blocking and spurious	17.00	17.00	
Section 4.2.21					
	14.7.3	response - speech channels for MS			
		supporting the R-GSM frequency band			
		NI/NV	N/A	N/A	
Section 4.2.22	Clause	Frequency error and Modulation			
	13.17.1	accuracy in EGPRS Configuration			
		NT/NV	PASS	PASS	
		LT/LV	PASS	PASS	
		LT/HV	PASS	PASS	
		HT/LV	PASS	PASS	
		HT/HV	PASS	PASS	
Section 4.2.23	Clause	Frequency error under multipath and			
	13 17 2	interference conditions in FGPRS			
	10.17.2	Configuration			
		NT/NV	DVCC	DAGG	
			PASS	PASS	
			PASS	PASS	
			PASS	PASS	
		HI/LV	PASS	PASS	
		HI/HV	PASS	PASS	_
Section 4.2.24	Clause	EGPRS Transmitter output power			Rema
	13.17.3	NT/NV	PASS	PASS	rk 3
		LT/LV	PASS	PASS	
		LT/HV	PASS	PASS	
		HT/LV	PASS	PASS	
		HT/HV	PASS	PASS	
Section 4 2 25	Clause	Output RF spectrum in FGPRS			
500001 1. E .EU	13 17 4	configuration			
	10.17.7	NT/NV/	PAGG	PAGG	
				DAGG	
	1		1 700	1 700	1

		LT/HV	PASS	PASS	
		HT/LV	PASS	PASS	
		HT/HV	PASS	PASS	
Section 4.2.26	Clause	Blocking and spurious response in			
	14.18.5	EGPRS configuration			
		NT / NV	PASS	PASS	

Remark: 1. The measurement uncertainty is not included in the test result;

- 2. See Section 4.1.1 for more details;
- 3. See Scetion 4.1.2 for more details;
- 4. See Section 4.1.3 for more details;
- 5. See Scetion 4.1.3 for more details.

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

3GPP TS 51.010-1	Test Description	Uncertainty
12.1.1	Conducted spurious emissions-MS Allocated a Channel Emissions@100kHz <f<2ghz Emissions@2GHz <f<12.75ghz< td=""><td>0.593dB 1.123 dB</td></f<12.75ghz<></f<2ghz 	0.593dB 1.123 dB
12.1.2	Conducted spurious emissions- MS in Idle Mode Emissions@100kHz <f<2ghz Emissions@2GHz <f<12.75ghz< td=""><td>0.649 dB 1.123 dB</td></f<12.75ghz<></f<2ghz 	0.649 dB 1.123 dB
12.2.1 12.2.2	Radiated spurious emissions	2.2dB
13.1 13.2 13.16.1 13.17.1 13.17.2	Frequency error and phase error Frequency error under multipath and interference conditions Frequency error and phase error in GPRS multislot configuration Frequency error and Modulation accuracy in EGPRS Configuration Frequency error under multipath and interference conditions in EGPRS Configuration	Freq Err<11.5Hz RMS Phase Err 1.0degrees Peak Phase Error 4.0degrees
13.3.4.1 13.16.2.4.1 13.17.3.4.1	Transmitter output power and burst timing Transmitter output power in GPRS multislot configuration EGPRS Transmitter output power	0.593dB
13.4 13.16.3 13.17.4	Output RF spectrum Transmitter output power in GPRS(or EGPRS)multislot configuration	0.593dB
14.7.1 14.18.5	Receiver Blocking and spurious response - speech channels Blocking and spurious response in EGPRS Configuration Wanted Signal@f<2GHz Blocking Signal@100kHz <f<2ghz Blocking Signal@2GHz<f<12.75ghz< td=""><td>0.649 dB 0.593 dB 1.035 dB</td></f<12.75ghz<></f<2ghz 	0.649 dB 0.593 dB 1.035 dB

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

3.6. Equipments Used during the Test

Details for TS8950

No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	GSM/WCDMA Signaling Unit	Rohde&Schwarz	CRTU-MS	11511.2500.02	2012/10/27
2	Power Sensor	Rohde&Schwarz	NRP-Z21	102638	2012/10/27
3	Power Sensor	Rohde&Schwarz	NRP-Z21	102639	2012/10/27
4	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2012/10/27
5	Signal Generator	Rohde&Schwarz	SMF100A	101932	2012/10/27
6	Vector signal genertor	Rohde&Schwarz	SMU200A	104329	2012/10/27
7	Vector signal genertor	Rohde&Schwarz	SMU200A	104332	2012/10/27
8	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	122206	2012/10/27

Vibrated

No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	electromagnetic vibration generator system	BERIER	BF-LD-F	200909281309	2012/10/27

Details for Radiated emissions test equipment

No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2012/10/27
2	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	2012/10/27
3	HORN ANTENNA	ShwarzBeck	9120D	1011	2012/10/27
4	HORN ANTENNA	ShwarzBeck	9120D	1012	2012/10/27
5	TURNTABLE	MATURO	TT2.0		2012/10/27
6	ANTENNA MAST	MATURO	TAM-4.0-P		2012/10/27
7	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2012/10/27
8	High pass filter	Compliance Direction systems	BSU-6	34202	2012/10/27
9	EMI TEST SOFTWARE	Rohde&Schwarz	ESK1	N/A	2012/10/27
10	EMI TEST RECEIVER	Rohde&Schwarz	ESI 26	100009	2012/10/27
11	RF TEST PANEL	Rohde&Schwarz	TS / RSP	335015/ 0017	2012/10/27
12	Broadband Preamplifier	ShwarzBeck	BBV743	9743-0079	2012/10/27
13	JS amplifer	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	2012/10/27
14	Amplifer	Compliance Direction systems	PAP1-4060	120	2012/10/27

The Cal. Interval was one year

4. TEST CONDITIONS AND RESULTS

4.1. ETSI EN 301 511 REQUIREMENTS

4.1.1. Transmitter output power in GPRS multislot configuration <u>LIMIT</u>

ETSI TS 51.010-1 (V.10.2.0) Sub-clause 13.16.2.5

The transmitter output power is the average value of the power delivered to an artificial antenna or radiated by the MS and its integral antenna, over the time that the useful information bits of one burst are transmitted. The transmitter output power, under every combination of normal and extreme test conditions, for normal bursts and access bursts, at each frequency and for each power control level applicable to the MS power class, shall be at the relevant level shown in table 13.16.2-1, table 13.16.2-2 or table 13.16.2-3 within the tolerances also shown in table 13.16.2-1, table 13.16.2-3.

Table 13.16.2-1: Bands other than DCS 1800 and PCS 1900 transmitter output power for different power

Classes								
	Powe	r class		Power	GAMMA_TN	Transmitter	Tolera	ances
				control	(Г _{СН})	output		
				level		power		
				(note 4)		(note 2.3)		
2	3	4	5			dBm	normal	extreme
•				2	0	39	\pm 2 dB	\pm 2.5 dB
•	•			3	1	37	\pm 3 dB (note 1)	\pm 4 dB (note 1)
•	•			4	2	35	\pm 3 dB	\pm 4 dB
•	•	•		5	3	33	\pm 3 dB (note 1)	\pm 4 dB (note 1)
•	•	•		6	4	31	\pm 3 dB	\pm 4 dB
•	•	•	•	7	5	29	\pm 3 dB (note 1)	\pm 4 dB (note 1)
•	•	•	•	8	6	27	\pm 3 dB	\pm 4 dB
•	•	•	•	9	7	25	\pm 3 dB	\pm 4 dB
				10	8	23	\pm 3 dB	\pm 4 dB
				11	9	21	\pm 3 dB	\pm 4 dB
				12	10	19	\pm 3 dB	\pm 4 dB
				13	11	17	\pm 3 dB	\pm 4 dB
				14	12	15	\pm 3 dB	\pm 4 dB
				15	13	13	\pm 3 dB	\pm 4 dB
				16	14	11	\pm 5 dB	\pm 6 dB
				17	15	9	\pm 5 dB	\pm 6 dB
				18	16	7	\pm 5 dB	\pm 6 dB
				19	17	5	\pm 5 dB	\pm 6 dB
NOTEA When the neuron control local company of the the neuron close of the MO the U. (1)								

NOTE1: When the power control level corresponds to the power class of the MS, then the tolerances shall be 2.0 dB under normal test conditions and 2.5 dB under extreme test conditions.

NOTE 2: For R99 and Rel-4, the maximum output power in a multislot configuration must be lower within the limits defined in table 13.16.2-1a. From Rel-5 onwards, the maximum output power in a multislot configuration may be lower within the limits defined in table 13.16.2-1b.

NOTE 3: For a MS using reduced interslot dynamic range in multislot configurations, the MS may restrict the interslot output power control range to a 10 dB window, on a TDMA frame basis. On those timeslots where the ordered power level is more than 10 dB lower than the applied power level of the highest power timeslot, the MS shall transmit at a lowest possible power level within 10 dB range from the highest applied power level, if not transmitting at the actual ordered power level. NOTE 4: There is no requirement to test power control levels 20-31.

Table 13 16 2-2: DCS	1 800 transmitte	r output power for	different nower classes

F	Power clas	S	Power control level (note 4)	GAMMA_TN (Γ _{CH})	Transmitter output power (note 2.3)	Tolera	nces
1	2	3	, , ,		dBm	Normal	extreme
		•	29	0	36	\pm 2.0 dB	\pm 2.5 dB

		•	30	1	34	\pm 3.0 dB	\pm 4.0 dB
		•	31	2	32	\pm 3.0 dB	\pm 4.0 dB
•		•	0	3	30	±3.0 dB(note_1)	\pm 4 dB(note_1)
•		•	1	4	28	\pm 3 dB	\pm 4 dB
•		•	2	5	26	\pm 3 dB	\pm 4 dB
•	•	•	3	6	24	\pm 3 dB(note_1)	\pm 4 dB(note_1)
•	•	•	4	7	22	\pm 3 dB	\pm 4 dB
•	•	•	5	8	20	\pm 3 dB	\pm 4 dB
•	•	•	6	9	18	\pm 3 dB	\pm 4 dB
•	•	•	7	10	16	\pm 3 dB	\pm 4 dB
•	•	•	8	11	14	\pm 3 dB	\pm 4 dB
•	•	•	9	12	12	\pm 3 dB	\pm 4 dB
•	•	•	10	13	10	\pm 3 dB	\pm 4 dB
•	•	•	11	14	8	\pm 3 dB	\pm 4 dB
•	•	•	12	15	6	\pm 3 dB	\pm 4 dB
•	•	•	13	16	4	\pm 3 dB	\pm 4 dB
•	•	•	14	17	2	\pm 3 dB	\pm 4 dB
•	•	•	15	18	0	\pm 3 dB	\pm 4 dB

NOTE1: When the power control level corresponds to the power class of the MS, then the tolerances shall be 2.0 dB under normal test conditions and 2,5 dB under extreme test conditions.

NOTE 2: For R99 and Rel-4, the maximum output power in a multislot configuration must be lower within the limits defined in table 13.16.2-2a. From Rel-5 onwards, the maximum output power in a multislot configuration may be lower within the limits defined in table 13.16.2-2b.

NOTE 3: For a MS using reduced interslot dynamic range in multislot configurations, the MS may restrict the interslot output power control range to a 10 dB window, on a TDMA frame basis. On those timeslots where the ordered power level is more than 10 dB lower than the applied power level of the highest power timeslot, the MS shall transmit at a lowest possible power level within 10 dB range from the highest applied power level, if not transmitting at the actual ordered power level.

NOTE 4: There is no requirement to test power control levels 16-28.

GSM 400, GSM 700, GSM 850 and GSM 900 allowed maximum output power reduction in a multislot configuration

	oo mga aton
Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power, (dB)
1	0
2	3.0
3	4.8
4	6.0
5	7.0
6	7.8
7	8.5
8	9.0

DCS 1 800 allowed maximum output power reduction in a multislot configuration

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power, (dB)
1	0
2	3.0
3	4.8
4	6.0
5	7.0
6	7.8
7	8.5
8	9.0

TEST PROCEDURE

1. Measurement of normal burst transmitter output power.

The SS takes power measurement samples evenly distributed over the duration of one burst with a sampling rate of at least 2/T, where T is the bit duration. The samples are identified in time with respect to the modulation on the burst. The SS identifies the centre of the useful 147 transmitted bits, i.e. the transition from bit 13 to bit 14 of the midamble, as the timing reference.

The transmitter output power is calculated as the average of the samples over the 147 useful bits. This is also used as the 0 dB reference for the power/time template.

- Measurement of normal burst power/time relationship The array of power samples measured in a) are referenced in time to the centre of the useful transmitted bits and in power to the 0 dB reference, both identified in 1.
- 3. Steps 1 to 2 are repeated on each timeslot within the multislot configuration with the MS commanded to operate on each of the nominal output power levels defined in tables 13.16.2-1, 13.16.2-2 and 13.16.2-3, and in step a) only on one nominal output power higher than supported by the MS. NOTE: Power control levels 0 and 1 are excluded for bands other than DCS 1800 and PCS 1900 since these power control levels can not be set by GAMMA_TN.
- 4. The SS commands the MS to the maximum power control level supported by the MS and steps a) to b) are repeated on each timeslot within the multislot configuration for ARFCN in the Low and High ranges.
- 5. The SS commands the MS to the maximum power control level in the first timeslot allocated within the multislot configuration and to the minimum power control level in the second timeslot allocated. Any further timeslots allocated are to be set to the maximum power control level. Steps 1 to 2 and corresponding measurements on each timeslot within the multislot configuration are repeated.
- 6. Measurement of access burst transmitter output power The SS causes the MS to generate an Access Burst on an ARFCN in the Mid ARFCN range, this could be either by a cell re-selection or a new request for radio resource. In the case of a cell re-selection procedure the Power Level indicated in the PSI3 message is the maximum power control level supported by the MS. In the case of an Access Burst the MS shall use the Power Level indicated in the GPRS_MS_TXPWR_MAX_CCH parameter. If the power class of the MS is DCS 1 800 Class 3 and the Power Level is indicated by the MS_TXPWR_MAX_CCH parameter, the MS shall also use the POWER_OFFSET parameter.

The SS takes power measurement samples evenly distributed over the duration of the access burst as described in a). However, in this case the SS identifies the centre of the useful bits of the burst by identifying the transition from the last bit of the synch sequence. The centre of the burst is then five data bits prior to this point and is used as the timing reference. The transmitter output power is calculated as the average of the samples over the 87 useful bits of the burst. This is also used as the 0 dB reference for the power/time template.

- Measurement of access burst power/time relationship The array of power samples measured in f) is referenced in time to the centre of the useful transmitted bits and in power to the 0 dB reference, both identified in 5.
- 8. Depending on the method used in step f) to cause the MS to send an Access Burst, the SS sends either a PACKET CELL CHANGE ORDER along with power control level set to 10 in PSI3 parameter GPRS_MS_TXPWR_MAX_CCH or it changes the (Packet) System Information elements (GPRS_)MS_TXPWR_MAX_CCH and for DCS 1 800 the POWER_OFFSET on the serving cell PBCCH/BCCH in order to limit the MS transmit power on the Access Burst to power control level 10 (+23 dBm for bands other than DCS 1800 and PCS 1900 or +10 dBm for DCS 1 800 and PCS 1 900) and then steps 5 to 6 are repeated.
- 9. Steps a) to h) are repeated under extreme test conditions (annex 1, TC2.2) except that the repeats at step 3 are only performed for power control level 10 and the minimum nominal output power level supported by the MS.

TEST RESULTS

GPRS900										
	SLOT: 1DO	WN4UP		Coding scheme: CS-4						
Test enviro	onment	Power		Transmitter Output power Meas Results						
Temperature (℃)	Voltage (V)	control Level	ARFCN	Results	ARFCN	Results	ARFCN	Results		
		5	980	28.12	62	28.54	120	28.10		
25	230	12	980	17.24	62	17.20	120	17.68		
		19	980	4.33	62	4.27	120	4.30		
		5	980	28.25	62	28.67	120	28.23		
	253	12	980	17.40	62	17.25	120	17.63		
20		19	980	4.30	62	4.26	120	4.31		
-20	207	5	980	28.20	62	28.54	120	28.23		
		12	980	17.31	62	17.25	120	17.60		
		19	980	4.38	62	4.33	120	4.35		
		5	980	28.15	62	28.60	120	28.15		
	253	12	980	17.28	62	17.28	120	17.72		
+55		19	980	4.28	62	4.29	120	4.38		
		5	980	28.17	62	28.60	120	28.19		
	207	12	980	17.22	62	17.28	120	17.68		
		19	980	4.22	62	4.24	120	4.38		
			PASS							

GPRS1800										
	SLOT: 1DO	WN4UP		Coding scheme: CS-4						
Test enviro	onment	Power		Transmitter Output power Meas Results						
Temperature (℃)	Voltage (V)	control Level	ARFCN	Results	ARFCN	Results	ARFCN	Results		
		0	520	24.11	698	24.38	880	24.07		
25	230	8	520	13.85	698	13.87	880	13.70		
		15	520	-0.56	698	-0.23	880	-0.86		
		0	520	24.27	698	24.31	880	24.15		
	253	8	520	13.80	698	13.86	880	13.76		
20		15	520	-0.40	698	-0.18	880	-0.80		
-20	207	0	520	24.20	698	24.30	880	24.12		
		8	520	13.83	698	13.82	880	13.71		
		15	520	-0.44	698	-0.18	880	-0.79		
		0	520	24.16	698	24.35	880	24.12		
	253	8	520	13.76	698	13.84	880	13.75		
+55		15	520	-0.52	698	-0.26	880	-0.82		
+00		0	520	24.19	698	24.30	880	24.10		
	207	8	520	13.79	698	13.84	880	13.75		
		15	520	-0.56	698	-0.26	880	-0.82		
			PASS							

GPRS900										
	SLOT: 2DO	WN2UP		Coding scheme: CS-4						
Test enviro	onment	Power		Transmitter Output power Meas Results						
Temperature (℃)	Voltage (V)	control Level	ARFCN	Results	ARFCN	Results	ARFCN	Results		
		5	980	31.38	62	31.50	120	31.76		
25	230	12	980	17.74	62	17.82	120	17.97		
		19	980	3.85	62	3.90	120	4.02		
		5	980	31.45	62	31.56	120	31.80		
	253	12	980	17.79	62	17.85	120	18.03		
20		19	980	3.87	62	3.92	120	4.06		
-20	207	5	980	31.49	62	31.56	120	31.80		
		12	980	17.82	62	17.89	120	18.00		
		19	980	3.90	62	3.96	120	4.00		
		5	980	31.42	62	31.52	120	17.99		
	253	12	980	17.82	62	17.80	120	31.82		
+55		19	980	3.94	62	3.92	120	4.05		
		5	980	31.42	62	31.65	120	31.78		
	207	12	980	17.84	62	17.88	120	18.02		
		19	980	3.93	62	3.92	120	4.02		
			PASS							

	GPRS1800								
	Coding scheme: CS-4								
Test enviro	onment	Power		Transmitter Output power Meas Results					
Temperature (℃)	Voltage (V)	control Level	ARFCN	Results	ARFCN	Results	ARFCN	Results	
		0	520	29.01	698	29.14	880	29.00	
25	230	8	520	13.56	698	13.42	880	13.38	
		15	520	-0.12	698	-0.02	880	-0.56	
		0	520	29.10	698	29.23	880	29.06	
	253	8	520	13.40	698	13.49	880	13.45	
20		15	520	-0.09	698	-0.05	880	-0.50	
-20	207	0	520	29.10	698	23.20	880	29.00	
		8	520	13.37	698	13.52	880	13.41	
		15	520	-0.12	698	-0.05	880	-0.56	
		0	520	29.05	698	29.17	880	29.05	
	253	8	520	13.58	698	13.46	880	13.41	
+55		15	520	-0.08	698	-0.07	880	-0.54	
+55		0	520	29.08	698	29.17	880	29.02	
	207	8	520	13.56	698	13.45	880	13.38	
		15	520	-0.07	698	-0.09	880	-0.52	
Test Results						PASS			

4.1.2. EGPRS Transmitter output power

<u>LIMIT</u>

ETSI TS 51.010-1 (V.10.2.0) Sub-clause 13.17.3.4.1

The transmitter output power is the average value of the power delivered to an artificial antenna or radiated by the MS and its integral antenna, over the time that the useful information bits of one burst are transmitted. Since the conformance requirement, test procedure and test requirement of GSMK modulated signal's output power are defined in subclause 13.16.2 for GPRS MS, being thereby defined also for all EGPRS MS in that section, only 8PSK modulated signal's output power conformance requirement, test procedure and test requirement, test procedure and test requirements are defined in this subclause.

The transmitter output power for the 8-PSK modulated signals, under every combination of normal and extreme test conditions, for normal bursts, at each frequency and for each power control level applicable to the MS power class, shall be at the relevant level shown in table 13.17.3-1 or table 13.17.3-2 within the tolerances also shown in table 13.17.3-1 or table 13.17.3-2.

Table 13.17.3-1: Bands other than DCS 1800 and PCS 1900 transmitter output power for different power classes 8PSK Modulated Signals

F	ower class	i	Power control GAMMA_TN Tr level (note 3) (Гсн) p		Transmitter output power (note 1.2)	Tolerances	
E1	E2	E3					
•			2-5	0-3	33	$\pm 2 dB$	\pm 2.5dB
			6	4	31	\pm 3 dB	\pm 4 dB
			7	5	29	\pm 3 dB	\pm 4 dB
	•		8	6	27	\pm 3 dB	\pm 4 dB
	•		9	7	25	\pm 3 dB	\pm 4 dB
	•	•	10	8	23	\pm 3 dB	\pm 4 dB
	•	•	11	9	21	\pm 3 dB	\pm 4 dB
	•	•	12	10	19	\pm 3 dB	\pm 4 dB
	•	•	13	11	17	\pm 3 dB	\pm 4 dB
	•	•	14	12	15	\pm 3 dB	\pm 4 dB
	•	•	15	13	13	\pm 3 dB	\pm 4 dB
	•	•	16	14	11	\pm 5 dB	\pm 6 dB
	•	•	17	15	9	\pm 5 dB	\pm 6 dB
	•	•	18	16	7	\pm 5 dB	\pm 6 dB
	•	•	19	17	5	\pm 5 dB	\pm 6 dB
NOTE 1:	For R99 an	d Rel-4, tl	he maximum output	power in a multis	lot configuration mus	t be lower v	vithin the

NOTE 1: For R99 and Rel-4, the maximum output power in a multislot configuration must be lower within the limits defined in table 13.17.3-1a. From Rel-5 onwards, the maximum output power in a multislot configuration may be lower within the limits defined in table 13.17.3-1b.

NOTE 2: For a MS using reduced interslot dynamic range in multislot configurations, the MS may restrict the interslot output power control range to a 10 dB window, on a TDMA frame basis. On those timeslots where the ordered power level is more than 10 dB lower than the applied power level of the highest power timeslot, the MS shall transmit at a lowest possible power level within 10 dB range from the highest applied power level, if not transmitting at the actual ordered power level.

NOTE 3: There is no requirement to test power control levels 20-31.

 Table 13.17.3-1a: R99 and Rel-4: Bands other than DCS 1800 and PCS 1900 allowed maximum output power reduction in a multislot configuration

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power, (dB)
1	0
2	0 to 3.0
3	1.8 to 4.8
4	3.0 to 6.0

Table 13.17.3-1b: From Rel-5 onwards: Bands other than DCS 1800 and PCS 1900 allowed maximum output power reduction in a multislot configuration

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power, (dB)
1	0
2	3.0
3	4.8
4	6.0

5	7.0
6	7.8
7	8.5
8	9.0

Table 13.17.3-2: DCS 1 800 and PCS 1 900 transmitter output power for different power classes 8-PSK

iniodulated Signals										
F	Power class		Power control	GAMMA_TN	Transmitter	Tolera	ances			
			level (note 3)	(Г _{СН})	output power					
					(note 1,2)					
E1	E2	E3				NORMAL	EXTREME			
•			29.0 *)	0-3 **)	30	\pm 3 dB ^(note 4)	±4dB ^(note 4)			
			1	4	28	\pm 3 dB	\pm 4 dB			
	•		2	5	26	\pm 3 dB ^(note 4)	±4dB ^(note 4)			
	•		3	6	24	\pm 3 dB	\pm 4 dB			
	•	•	4	7	22	\pm 3 dB	\pm 4 dB			
	•	•	5	8	20	\pm 3 dB	\pm 4 dB			
	•	•	6	9	18	\pm 3 dB	\pm 4 dB			
	•	•	7	10	16	\pm 3 dB	\pm 4 dB			
	•	•	8	11	14	\pm 4 dB	\pm 4 dB			
	•	•	9	12	12	\pm 4 dB	\pm 5 dB			
	•	•	10	13	10	\pm 4 dB	\pm 5 dB			
	•	•	11	14	8	\pm 4 dB	\pm 5 dB			
	•	•	12	15	6	\pm 4 dB	\pm 5 dB			
	•	•	13	16	4	\pm 5 dB	\pm 5 dB			
	•	•	14	17	2	\pm 5 dB	\pm 6 dB			
	•	•	15	18	0	\pm 5 dB	\pm 6 dB			
*) 20 0 fo										

*) 30-0 for PCS 1900 **) 1-3 for PCS 1900

NOTE 1: For R99 and Rel-4, the maximum output power in a multislot configuration must be lower within the limits defined in table 13.17.3-2a. From Rel-5 onwards, the maximum output power in a multislot configuration may be lower within the limits defined in table 13.17.3-2b.

NOTE 2: For a MS using reduced interslot dynamic range in multislot configurations, the MS may restrict the interslot output power control range to a 10 dB window, on a TDMA frame basis. On those timeslots where the ordered power level is more than 10 dB lower than the applied power level of the highest power timeslot, the MS shall transmit at a lowest possible power level within 10 dB range from the highest applied power level, if not transmitting at the actual ordered power level.

NOTE 3: There is no requirement to test power control levels 16-28.

NOTE 4: When the power control level corresponds to the power class of the MS, then the tolerances shall be ±2,0 dB under normal test conditions and ±2,5 dB under extreme test conditions for a class E1 mobile. For a class E2 mobile the tolerances shall be -4/+3 under normal test conditions and -4,5/+4 dB under extreme test conditions.

TEST PROCEDURE

1. Measurement of normal burst transmitter output power

For 8PSK, power may be determined by applying the technique described for GMSK in subclause 13.16.2.4.1.2; step a) and then averaging over multiple bursts to achieve sufficient accuracy (see annex 5). Alternatively, an estimation technique based on a single burst which can be demonstrated to yield the same result as the long term average may be used. The long term average or the estimate of long term average is used as the 0dB reference for the power/time template.

- 2. Measurement of normal burst power/time relationship. The array of power samples measured in a) are referenced in time to the centre of the useful transmitted symbols and in power to the 0 dB reference, both identified in 1.
- Steps 1 to 2 are repeated on each timeslot within the multislot configuration with the MS commanded to operate on each of the nominal output power levels defined in tables 13.17.3-1, 13.17.3-2 and 13.17.3-3. NOTE: Power control levels 0 and 1 are excluded for bands other than DCS 1800 and PCS 1900 since these power control levels can not be set by GAMMA_TN.
- 4. The SS commands the MS to the maximum power control level supported by the MS and steps a) to b) are repeated on each timeslot within the multislot configuration for ARFCN in the Low and High ranges.
- 5. The SS commands the MS to the maximum power control level in the first timeslot allocated within the multislot configuration and to the minimum power control level in the second timeslot allocated. Any further timeslots allocated are to be set to the maximum power control level. Steps a) to b) and

corresponding measurements on each timeslot within the multislot configuration are repeated. This step is only applicable to MS which support more than one uplink time slot.

6. Steps 1 to 5 are repeated under extreme test conditions (annex 1, TC2.2) except that the repeats at step c) are only performed for power control level 10 and the minimum nominal output power level supported by the MS.

Table 13.17.3-2a: R99 and Rel-4: DCS 1 800 and PCS 1 900 allowed maximum output power reduction in a multislot configuration

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power, (dB)
1	0
2	0 to 3.0
3	1.8 to 4.8
4	3.0 to 6.0

Table 13.17.3-2b: From Rel-5 onwards: DCS 1 800 and PCS 1 900 allowed maximum output power reduction in a multislot configuration

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power, (dB)
1	0
2	3.0
3	4.8
4	6.0
5	7.0
6	7.8
7	8.5
8	9.0

TEST RESULTS

EGPRS900								
	SLOT: 1DO	WN4UP		Coding scheme: CS-4				
Test enviro	onment	Power		Transmit	ter Output	power Meas	s Results	
Temperature	Voltage	control	ARECN	Results	ARECN	Results	ARECN	Results
(℃)	(V)	Level		ittouitto				ittoouno
		8	980	25.32	62	25.15	120	25.03
		10	980	22.01	62	22.34	120	22.14
25	230	12	980	18.96	62	18.77	120	18.52
20	200	14	980	14.24	62	14.11	120	14.03
		16	980	10.69	62	10.52	120	10.22
		19	980	4.24	62	4.36	120	4.13
		8	980	25.38	62	25.33	120	25.10
		10	980	22.08	62	22.47	120	22.27
	252	12	980	18.82	62	18.82	120	18.69
	255	14	980	14.16	62	14.37	120	14.21
		16	980	10.82	62	10.66	120	10.22
20		19	980	4.40	62	4.45	120	4.21
-20	207	8	980	25.38	62	25.27	120	25.15
		10	980	22.04	62	22.42	120	22.27
		12	980	18.89	62	18.82	120	18.66
		14	980	14.20	62	14.29	120	14.17
		16	980	10.74	62	10.60	120	10.22
		19	980	4.40	62	4.41	120	4.18
		8	980	25.35	62	25.15	120	25.12
		10	980	22.01	62	22.41	120	22.17
	050	12	980	18.82	62	18.82	120	18.60
	253	14	980	14.26	62	14.33	120	14.10
		16	980	10.75	62	10.58	120	10.22
		19	980	4.35	62	4.38	120	4.18
+55		8	980	25.32	62	25.20	120	25.09
		10	980	22.05	62	22.41	120	22.15
	0.07	12	980	18.85	62	18.78	120	18.55
	207	14	980	14.20	62	14.38	120	14.10
		16	980	10.69	62	10.50	120	10.22
		19	980	4.29	62	4.34	120	4.13
	Test Res	sults				PASS		

Report No.: TRE1303013502

EGPRS1800								
	SLOT: 1DO	WN4UP		Coding scheme: CS-4				
Test enviro	onment	Power	Transmitter Output power Meas Results					
Temperature (℃)	Voltage (V)	control Level	ARFCN	Results	ARFCN	Results	ARFCN	Results
		2	520	24.10	698	24.15	880	24.22
		5	520	19.81	698	19.77	880	19.64
25	230	8	520	13.40	698	13.51	880	13.53
		11	520	7.52	698	7.54	880	7.37
		15	520	-0.55	698	-0.42	880	-0.50
		2	520	24.16	698	24.23	880	24.35
		5	520	19.74	698	19.80	880	19.78
	253	8	520	13.52	698	13.66	880	13.60
		11	520	7.59	698	7.67	880	7.42
20		15	520	-0.48	698	-0.36	880	-0.41
-20	207	2	520	24.16	698	24.20	880	24.31
		5	520	19.78	698	19.77	880	19.73
		8	520	13.55	698	13.63	880	13.58
		11	520	7.62	698	7.60	880	7.40
		15	520	-0.52	698	-0.39	880	-0.45
		2	520	24.12	698	24.17	880	24.27
		5	520	19.77	698	19.74	880	19.68
	253	8	520	13.48	698	13.60	880	13.53
		11	520	7.59	698	7.63	880	7.40
+55		15	520	-0.55	698	-0.40	880	-0.45
100		2	520	24.12	698	24.17	880	24.25
		5	520	19.80	698	19.81	880	19.68
	207	8	520	13.50	698	13.56	880	13.53
		11	520	7.59	698	7.54	880	7.39
		15	520	-0.52	698	-0.40	880	-0.49
Test Results						PASS		

EGPRS900									
	SLOT: 2DO	WN2UP		Coding scheme: CS-4					
Test enviro	onment	Power		Transmit	Fransmitter Output power Meas Results				
Temperature Voltage		control		Poculte		Poculte		Posulte	
(℃)	(V)	Level		Results		Results		Results	
		8	980	26.10	62	25.98	120	25.77	
		10	980	22.35	62	22.31	120	22.14	
25	230	12	980	18.74	62	18.66	120	18.50	
25	230	14	980	14.59	62	14.54	120	14.23	
		16	980	10.66	62	10.72	120	10.55	
		19	980	4.52	62	4.47	120	4.36	
		8	980	26.22	62	26.10	120	25.90	
		10	980	22.44	62	22.42	120	22.25	
	252	12	980	18.71	62	18.66	120	18.46	
	255	14	980	14.60	62	14.62	120	14.37	
		16	980	10.72	62	10.70	120	10.55	
20		19	980	4.59	62	4.55	120	4.48	
-20	207	8	980	26.22	62	26.10	120	22.87	
		10	980	22.40	62	22.40	120	22.20	
		12	980	18.71	62	18.63	120	18.50	
		14	980	14.63	62	14.62	120	14.35	
		16	980	10.69	62	10.72	120	10.52	
		19	980	4.59	62	4.50	120	4.45	
		8	980	26.18	62	26.05	120	22.85	
		10	980	22.40	62	22.38	120	22.20	
	050	12	980	18.74	62	18.60	120	18.46	
	200	14	980	14.61	62	14.57	120	14.28	
		16	980	10.69	62	10.68	120	10.50	
		19	980	4.55	62	4.53	120	4.40	
+55		8	980	26.15	62	26.02	120	22.82	
		10	980	22.37	62	22.35	120	22.17	
	207	12	980	18.70	62	18.60	120	10.46	
	207	14	980	14.60	62	14.54	120	14.30	
		16	980	10.67	62	10.72	120	10.50	
		19	980	4.55	62	4.55	120	4.43	
	PASS								

Report No.: TRE1303013502

EGPRS1800									
	SLOT: 1DO	WN2UP		Coding scheme: CS-4					
Test envir	onment	Power	Transmitter Output power Meas Results						
Temperature (℃)	Voltage (V)	control Level	ARFCN	Results	ARFCN	Results	ARFCN	Results	
		2	520	24.95	698	24.71	880	24.55	
		5	520	19.44	698	19.55	880	19.48	
25	230	8	520	13.60	698	13.63	880	13.60	
		11	520	7.77	698	7.69	880	7.64	
		15	520	-0.35	698	-0.40	880	-0.48	
		2	520	25.13	698	24.86	880	24.63	
		5	520	19.58	698	19.55	880	19.42	
	253	8	520	13.67	698	13.69	880	13.68	
		11	520	7.70	698	7.62	880	7.66	
20		15	520	-0.42	698	-0.36	880	-0.41	
-20	207	2	520	23.10	698	24.86	880	23.60	
		5	520	19.55	698	19.50	880	19.48	
		8	520	13.62	698	13.66	880	13.66	
		11	520	7.75	698	7.62	880	7.66	
		15	520	-0.42	698	-0.40	880	-0.45	
		2	520	23.06	698	24.78	880	24.58	
		5	520	19.50	698	19.50	880	19.48	
	253	8	520	13.62	698	13.65	880	13.64	
		11	520	7.72	698	7.66	880	7.66	
+55		15	520	-0.35	698	-0.40	880	-0.50	
+55		2	520	23.00	698	24.75	880	24.55	
		5	520	19.54	698	19.50	880	19.42	
	207	8	520	13.60	698	13.66	880	13.62	
		11	520	7.72	698	7.66	880	7.66	
		15	520	-0.35	698	-0.36	880	-0.48	
Test Results						PASS			

4.1.3. Radiated spurious emissions

<u>LIMIT</u>

ETSI TS 51.010-1 (V.10.2.0) Sub-clause 12.1.1.5 and 12.2.2.5

MS allocated a channel

Radiated spurious emissions, when the MS has been allocated a channel, are any emissions radiated by the cabinet and structure of the mobile station, including all interconnecting cables.

This is also known as "cabinet radiation".

The test applies to all types of MS with the exception of the test at extreme voltages for an MS where a practical connection, to an external power supply, is not possible.

NOTE: A "practical connection" shall be interpreted to mean it is possible to connect extreme voltages to the MS without interfering with the configuration of the MS in a way which could invalidate the test.

The radiated spurious power emitted by the MS, when allocated a channel, shall be no more than the levels in table 12.7 under extreme voltage conditions; 3GPP TS 05.05, subclauses 4.3 and 4.3.3, and clause D.2.

		Power level in dBm					
Frequen	cy range	GSM 400, GSM 700, T-GSM 810, GSM 850, GSM 900 DCS 1 800		PCS 1 900			
100 kHz to 1 GHz		-36 -36		-36			
1 GHz to	12.75 GHz	-30		-30			
1 GHz to	1710 MHz		-30				
1 710 MHz to	1 785 MHz		-36				
1 785 MHz to	4 GHz		-30				

MS in idle mode

Radiated spurious emissions, when the MS is in idle mode, are any emissions radiated by the cabinet and structure of the mobile station, including all interconnecting cables.

This is also known as "cabinet radiation".

The test applies to all types of MS with the exception of the test at extreme voltages for an MS where a practical connection, to an external power supply, is not possible.

NOTE: A "practical connection" shall be interpreted to mean it is possible to connect extreme voltages to the MS without interfering with the configuration of the MS in a way which could invalidate the test.

The radiated spurious power emitted by the MS, when in idle mode, shall be no more than the levels in table 12.9. under extreme voltage conditions; 3GPP TS 05.05, subclauses 4.3 and 4.3.3, and clause D.2.

a	bl	е	1	2.	9	

		Power level in dBm				
Frequen	cy range	GSM 400, T-GSM 810	GSM 700, GSM 850,			
		GSM 900, DCS 1 800	PCS 1 900			
100 kHz to	880 MHz	-57	-57			
880 MHz to	915 MHz	-59	-57			
915 MHz to	1 000 MHz	-57	-57			
1 GHz to	1 710 MHz	-47				
1 710 MHz to	1 785 MHz	-53				
1 785 MHz to	12.75 GHz	-47				
1 GHz to	1 850 MHz		-47			
1 850 MHz to 1	1 910 MHz		-53			
1 910 MHz to	12.75 GHz		-47			

TEST CONFIGURATION

Table 12.7

TEST PROCEDURE

Step 1:

The measurement is carried out in the fully anechoic chamber. EUT was placed on a 1.50 meter high nonconductive table at a 3 meter test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. The height of receiving antenna is 1.50 m and varies in certain range to find the maximum power value. Connect the EUT to the BTS simulator via the air interface. The measurement is carried out using a spectrum analyzer or receiver. Then the antenna height and turn table rotation is adjusted till the maximum power value is founded on spectrum analyzer or receiver. A filter is necessary in the band near to the carrier frequency. A filter is needed to avoid the distortion of the testing equipment in the band above the carrier frequency.

Step 2:

A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

Calculation procedure:

The data of cable loss, antenna gain and air loss has been calibrated in full testing frequency range before the testing.

The power of the Radiated Spurious Emissions is calculated by adding the cable loss, antenna gain and air loss. The basic equation with a sample calculation is as followed:

$$P=P_R+L_C+L_A-G$$

Where

P: Power of the Radiated Spurious Emissions (dBm)

 P_R : reading of the receiver (dBm)

L_c: Cable Lose and power amilifer gain and filter cable loss (dB) L_A: Air loss (dB) G: Antenna Gain (dBi) Assumed the reading of the receiver is -60dBm. A cable lose of 10dB, an air lose of 30dB and an antenna gain of 11dBi are added. $P=P_R+L_c+L_A-G=-60+10+30-11=-31dBm$

TEST RESULTS

This test was carried out in all the test modes, here only the worst test result was shown.

The EUT has met the requirements of 3GPP2 C.S0011-A's requirement.

For GPRS900

Traffic Mode (30MHz~4GHz)

The Middle Channel @Horizontal @ High Voltage

The Middle Channel @Vertical @ High Voltage

Page 30 of 53

The Middle Channel @Horizontal @ Nor Voltage

Page 31 of 53

The Middle Channel @Horizontal @ Low Voltage

The Middle Channel @Vertical @ Low Voltage

Idle Mode (30MHz~4GHz)

The Middle Channel @Vertical @ High Voltage

The Middle Channel @Horizontal @ Nor Voltage

The Middle Channel @Vertical @ Nor Voltage

The Middle Channel @Horizontal @ Low Voltage

The Middle Channel @Vertical @ Low Voltage

For GPRS1800

Traffic Mode (30MHz~4GHz)

The Middle Channel @Horizontal @ High Voltage

The Middle Channel @Vertical @ High Voltage

Page 36 of 53

The Middle Channel @Horizontal @ Nor Voltage

The Middle Channel @Vertical @ Nor Voltage

Page 37 of 53

The Middle Channel @Horizontal @ Low Voltage

The Middle Channel @Vertical @ Low Voltage

Idle Mode (30MHz~4GHz)

The Middle Channel @Vertical @ High Voltage

The Middle Channel @Horizontal @ Nor Voltage

The Middle Channel @Vertical @ Nor Voltage

The Middle Channel @Horizontal @ Low Voltage

The Middle Channel @Vertical @ Low Voltage

For EGPRS900

Traffic Mode (30MHz~4GHz)

MES EG900_M_NTHV_V

1.79759519 GHz -44 dBm Marker: Level [dBm] -10 -20 -30 -40 -50 ~NVVW -60 Munghanda . -70 М Mallo -80 MN -90 -100 30M 100M 200M 400M 1G 2G 3G 5G 12.75G Frequency [Hz]

The Middle Channel @Vertical @ High Voltage

Page 42 of 53

The Middle Channel @Horizontal @ Nor Voltage

Page 43 of 53

The Middle Channel @Horizontal @ Low Voltage

The Middle Channel @Vertical @ Low Voltage

Idle Mode (30MHz~4GHz)

The Middle Channel @Vertical @ High Voltage

The Middle Channel @Horizontal @ Nor Voltage

The Middle Channel @Vertical @ Nor Voltage

The Middle Channel @Horizontal @ Low Voltage

The Middle Channel @Vertical @ Low Voltage

For EGPRS1800

Traffic Mode (30MHz~4GHz)

The Middle Channel @Vertical @ High Voltage

Page 48 of 53

The Middle Channel @Horizontal @ Nor Voltage

The Middle Channel @Vertical @ Nor Voltage

Page 49 of 53

The Middle Channel @Horizontal @ Low Voltage

The Middle Channel @Vertical @ Low Voltage

Idle Mode (30MHz~4GHz)

The Middle Channel @Vertical @ High Voltage

The Middle Channel @Horizontal @ Nor Voltage

The Middle Channel @Vertical @ Nor Voltage

The Middle Channel @Horizontal @ Low Voltage

The Middle Channel @Vertical @ Low Voltage

5. Test Set-up Photos of the EUT

.....End of Report.....